skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Balakrishna, Abhishek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The strong asymptotic stabilization of 3D hyperbolic dynamics is achieved by a damped 2D elastic structure. The model is a Neumann wave-type equation with low regularity coupling conditions given in terms of a nonlinear von Karman plate. This problem is motivated by the elimination of aeroelastic instability (sustained oscillations of bridges, airfoils, etc.) in engineering applications. Empirical observations indicate that the subsonic wave-plate system converges to equilibria. Classical approaches which decouple the plate and wave dynamics have fallen short. Here, we operate on the model as it appears in the engineering literature with no regularization and achieve stabilization by microlocalizing the Neumann boundary data for the wave equation (given through the plate dynamics). We observe a compensation by the plate dynamics precisely where the regularity of the 3D Neumann wave is compromised (in the characteristic sector). 
    more » « less
  2. The large deflections of panels in subsonic flow are considered, specifically a fully clamped von Karman plate accounting for both rotational inertia in plate filaments and (mild) structural damping. The panel is taken to be embedded in the boundary of the positive half-space in ℝ3 containing a linear, subsonic potential flow. Solutions are constructed via a semigroup approach despite the lack of natural dissipativity associated with the generator of the linear dynamics. The flow–plate dynamics are then reduced—via an explicit Neumann-to-Dirichlet (downwash-to-pressure) solver for the flow—to a memory-type dynamical system for the plate. For the non-conservative plate dynamics, a global attractor is explicitly constructed via Lyapunov and recent quasi-stability methods. Finally, it is shown that, via the compactness of the attractor and finiteness of the dissipation integral, all trajectories converge strongly to the set of stationary states. 
    more » « less